高数期末考试重点(考研高数书要过一遍吗)




一、数二考研高数范围是什么

考试内容:函数的概念及表示法;函数的有界性、单调性、周期性和奇偶性;复合函数、反函数、分段函数和隐函数;基本初等函数的性质及其图形;初等函数;函数关系的建立;数列极限与函数极限的定义及其性质;函数的左极限和右极限;无穷小量和无穷大量的概念及其关系;

无穷小量的性质及无穷小量的比较;极限的四则运算;极限存在的两个准则:单调有界准则和夹逼准则;两个重要极限:函数连续的概念;函数间断点的类型;初等函数的连续性;闭区间上连续函数的性质。

1、理解导数和微分的概念,理解导数和微分的关系,理解函数的可导性与连续性之间的关系。

2、掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

3、了解高阶导数的概念,会求简单函数的高阶导数。

4、会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。

5、理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西( Cauchy)中值定理。

6、掌握用洛必达法则求未定式极限的方法。

7、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。

8、会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当>0时,f(x)的图形是凹的;当<0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。

9、了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径。

考试内容:原函数和不定积分的概念;不定积分的基本性质;基本积分公式定积分的概念和基本性质;定积分中值定理;积分上限的函数及其导数;牛顿-莱布尼茨(Newton-Leibniz)公式;

不定积分和定积分的换元积分法与分部积分法;有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分;定积分的应用

1、理解原函数的概念,理解不定积分和定积分的概念。

2、掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法。

3、会求有理函数、三角函数有理式和简单无理函数的积分。

4、理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式。

5、了解反常积分的概念,会计算反常积分。

6、掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值。

1、了解多元函数的概念,了解二元函数的几何意义。

2、了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质。

3、了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数。

4、了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并求解一些简单的应用问题。

5、理解二重积分的概念,了解二重积分的基本性质,了解二重积分的中值定理,掌握二重积分的计算方法(直角坐标、极坐标)。

考试内容:常微分方程的基本概念;变量可分离的微分方程;齐次微分方程;一阶线性微分方程;可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程;高于二阶的某些常系数齐次线性微分方程;简单的二阶常系数非齐次线性微分方程;微分方程的简单应用。

1、了解微分方程及其阶、解、通解、初始条件和特解等概念。

2、掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程。

4、理解线性微分方程解的性质及解的结构。

5、掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。

6、会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程。

7、会用微分方程解决一些简单的应用问题。

二、考研高数复习重点有哪些

1、考研数学主要是考基础,包括基本概念、基本理论、基本运算,数学本来就是一门基础的学科,如果基础、概念、基本运算不太清楚,运算不太熟练那你肯定是考不好的,所以基础一定要打扎实。高等数学是考研数学内容最多的一部分,所以高等数学这部分是相当重要的。高数的基础应该着重放在极限、导数、不定积分这三方面,后面当然还有定积分、一元微积分的应用,还有中值定理、多元函数、微分、线面积分等等内容。

2、此外,数学要考的另一部分是简单的分析综合能力和解应用题的能力。近几年,高数中的一些考题很少有单纯考一个知识点的,一般都是多个知识点的综合。解应用题要求的知识面比较广,包括数学的知识比较要扎实,还有几何、物理、化学、力学等等这些好多知识。当然它主要考的就是数学在几何中的应用,在力学中的应用,在物理中的吸引力、电力做功等等这些方面。数学要考的第四个方面就是运算的熟练程度,换句话说就是解题的速度。如果能够围绕着这几个方面进行有针对性地复习,考研培训取得高分就不会是难事了。

3、那么,同学们在具体的复习过程中要怎么做呢?万学海文数学考研辅导专家们在此给2014年的考生们提供以下复习技巧:

4、数学复习是要保证熟练度的,平时应该多训练,应该一抓到底,经常练习,一天至少保证三个小时。把一些基本概念、定理、公式复习好,牢牢地记住。同时数学还是一种基本技能的训练,像骑自行车一样。尽管你原来骑得非常好,但是长时间不骑,再骑总有点不习惯。所以考生们经常练习是很重要的,天天做、天天看,一直到考试的那一天。这样的话,就绝对不会生疏了,解题速度就能够跟上去。

5、如果现在你已经开始了高数初级阶段的复习,那么在之后的更加细密的复习过程中同学们需要注意哪些问题呢?

6、首先要明确考试重点,充分把握重点。比如高数第一章“函数极限和连续”的重点就是不定式的极限,考生要充分掌握求不定式极考研英语真题限的各种方法,比如利用极限的四则运算、利用洛必达法则等等,另外两个重要的极限也是重点内容;对函数的连续性的探讨也是考试的重点,这要求我们需要充分理解函数连续的定义和掌握判断连续性的方法。

7、对于导数和微分,其实重点不是给一个函数考导数,而重点是导数的定义,也就是抽象函数的可导性。对于积分部分,定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型,总而言之看上不好处理的函数的积分常常是考试的重点。而且求积分的过程中,一定要注意积分的对称性,我们要利用分段积分去掉绝对值把积分求出来。还有中值定理这个地方一般每年都要考一个题的,多看看以往考试题型,研究一下考试规律。对于多维函数的微积分部分里,多维隐函数的求导,复合函数的偏导数等是考试的重点。二重积分的计算,当然数学1里面还包括了三重积分,这里面每年都要考一个题目。另外曲线和曲面积分,这也是必考的重点内容。一阶微分方程,还有无穷级数,无穷级数的求和,主要是间接的展开法。重点主要就是这些了。

8、要充分把握住这些重点,同学们在以后的复习的强化阶段就应该多研究历年真题,这样做也能更好地了解命题思路和难易度。

9、最后,希望考生们有针对性地进行扎实的复习、心理学考研逐步解决高数的重难知识点加上对出题者命题思路的了解,相信大家一定能取得高分!

三、考研数学考高数上册的多还是考高数下册的多

1、高数上册七章一二三都考,是公共内容,其中导数里面参数方程求导数三不要,物理应用不要,换成了经济应用,弹性,边际之类的,曲率不要,积分里面有理函数积分不要,定积分物理不要,弧长,旋转体侧面积不要,微分方程可降阶不要,伯努利方程不要,欧拉方程不要,另外再补充差分方程,一阶就够了。

2、考研数学(Graduate in Mathematics)是指针对研究生考试的数学科目,根据不同学科、专业对研究生入学所应具备的数学知识和能力的不同要求,将研究生入学统考试卷分为工科类数学一、数学二,经济学和管理学数学三,具体专业所使用的试卷种类有具体规定。

3、根据工学、经济学、管理学各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种,其中针对工学门类的为数学一、数学二,针对经济学和管理学门类的为数学三。

四、考研高数最难的是哪一部分

首先,你问的是高数,不是数学,说明你没有问线性代数和概率论与数理统计,其实这两部分都比较简单,都可以拿全分。接下来我说说高等数学吧,一元函数求导和积分是基础中的基础,必须过关;较难的地方有:函数连续,可导,可微,可积这四个基本概念和相互之间的联系(基本概念类的题),中值定理的证明题(构造函数比较难),多重积分(对坐标和曲线的曲线积分,对坐标和曲面的曲面积分,格林公式,斯托克斯公式,高斯公式这三大公式的应用),数学建模和解模。

五、考研数学高数有哪些考点

1、函数、连续、极限:这部分内容需要理解函数和极限的相关概念以及它们的运用法则,了解函数的连续性并且要学会运用这些规则。

2、向量个考研高数里面的一个非常重要的考点,这部分主要的考试重点有向量代数和空间解析几何,需要了解一些概念和方程式,并且要学会解决一些问题。

3、无穷级数:这是考研高数中有一个考察的内容,需要了解一写函数的发散特点和必要充分的条件,会写出部分函数的表达式。

OK,本文到此结束,希望对大家有所帮助。

未经允许不得转载:考研培训班 » 高数期末考试重点(考研高数书要过一遍吗)

赞 (0) 打赏

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏